SYNKINEMATIC ULTRAMAFIC-MAFIC MAGMATISM IN THE RED
RIVER SHEAR ZONE
A. E. IZOKH1, TRẦN TRỌNG HOÀ2,
G. V. POLYAKOV1,
NGÔ THỊ PHƯỢNG2, TRẦN TUẤN ANH2, A. V. TRAVIN3
1Institute of Geology, SB RAS, Novosibirsk, Russia;
2Institute of Geological Sciences, NCNST, Hoàng Quốc Việt Road, Hà
Nội, Việt Nam;
3Analytical Center of UIGGM, SB RAS, Novosibirsk, Russia
Abstract: A
multistage syn-shearing differentiated lherzolite-websterite-gabbro association
is distinguished as a part of the Red River Shear zone (RRSZ). Isotope studies
provided some tentative forming stages of the ultramafic-mafic association of
the RRSZ. The eraly stage (49-42 Ma) is recorded by garnet-bearing amphibole
gabbro and peridotite with Al-high clinopyroxene at the M#u A cross-section,
which were intruded under deep conditions before the exhumation of the matter
from the shear zone. Younger ages (35 Ma) has been obtained for the amphibole
gabbro at the marginal part of the shear zone (Mậu A cross-section) and for the
websterite from the Việt Trì area, which coincides with the time of formation
of Phan Si Pan lamproite. The youngest age (25 Ma) has been obtained for
amphibole gabbro with Al-low clinopyroxene, which probably was generated at
lower depth after exhumation. The presence of high-temperature mantle-derived
melts, which intruded at different stages of the RRSZ formation, provides a new
view on its tectonic history.
INTRODUCTION
The Red
River or Ailao Shan - Red River shear zone (RRSZ) attracts the attention of
geologists because the formation of this large-amplitude shear zone (more than
600 km) is associated with the Indostan-Eurasia collision [1]. Earlier, the
metamorphic rocks of this zone were considered as an Archean metamorphic
structure [2]. Recent geochronological studies have shown, however, that they
were formed in the Late Oligocene-Early Miocene [3-5]. Igneous rocks of the
RRSZ have received less attention. But the post-shear granite massifs of this
zone are shown to be formed 22-24 Ma years ago [6]. There are some bodies of
lherzolites, olivine pyroxenites, and pyroxenites (Bảo ái Complex) in the RRSZ,
whose igneous genesis is proven, but no data are available about their age, the
formation to which they belong, and their geodynamic setting [7,8].
Amphibolites, gabbro-amphibolites, and garnet amphibolites are also described
as counterparts of the Proterozoic Cẩm An Complex. Some researchers describe
these formations as amphibolites of the metamorphic formations of the Dãy Núi
Con Voi or RRSZ zone [5].
GEOLOGIC
SETTING
In 2002, in
the framework of the project "Within-plate magmatism of North Việt Nam and
its metallogeny" we have studied on amphibolites, amphibole gabbros,
pyroxenites, peridotites, and different granitoids of the Dãy Núi Con Voi zone
in some cross-sections across the strike of the RRSZ zone (Fig. 1).
In the
cross-sections Km 9 southeast of Bảo Yên along the road, thin (5-10 cm)
interbeds of garnet amphibolites with metamorphic foliation occur within
garnet-sillimanite-biotite gneisses with bedding-plane partings of migmatites.
Combined with gneisses, these rocks form complicated folds, which are
distinguishable as metamorphic formations (paramphibolites). There are also
massive garnet-bearing metagabbros (H1591) with fine impregnation of pyrrhotite
and chalcopyrite and with poikilitic grains of biotite. In composition, these
rocks correspond to subalkalic gabbros (monzogabbros) and are characterized by
high contents of TiO2 and K2O (Table 5). They are
intruded by veins of cordierite granite-pegmatite. In the central part of the
zone, fresh clean-ups along the road expose dike bodies of amphibole gabbros
(H1701/1) and hornblendites (H1701/2), which are experienced viscoplastic deformations
and lensing (Fig. 2). The amphibole gabbros in these bodies are characterized
by uniform composition and massive structure. Unlike the amphibolites, they
show neither metamorphic differentiation nor folded deformations. Thin sections
display igneous gabbro texture, thus implying their magmatic genesis. The
gabbroids contain pyrrhotite-chalcopyrite impregnation. The host metamorphic
rocks are also sulfidized and graphitized in places. Veins of leucocratic
granites and granite pegmatites break through the gabbroids. Lherzolites and
pyroxenites are absent in this site.
Table
1. Olivine composition from peridotite from the Red River shear zone
|
Sample |
SiO2 |
FeO |
MnO |
MgO |
CaO |
Total |
f |
1 |
H1715 |
39,36 |
17,41 |
0,161 |
42,52 |
0 |
99,45 |
0,19 |
2 |
H1715 |
39,48 |
17,2 |
0,196 |
42,66 |
0,028 |
99,56 |
0,18 |
3 |
H1718 |
38,69 |
23,75 |
0,39 |
36,34 |
0,005 |
99,17 |
0,17 |
4 |
H1719/2 |
40,01 |
15,95 |
0,171 |
42,46 |
0 |
98,59 |
0,27 |
5 |
H1719/2 |
40,46 |
14,43 |
0,151 |
43,34 |
0,021 |
98,40 |
0,17 |
6 |
H1720/1 |
40,65 |
14,9 |
0,169 |
43,73 |
0,023 |
99,47 |
0,16 |
7 |
H1720/1 |
40,03 |
15,95 |
0,288 |
42,87 |
0,006 |
99,14 |
0,16 |
8 |
H1721/2 |
40,03 |
16,32 |
0,293 |
42,71 |
0,008 |
99,36 |
0,17 |
9 |
H1721/2 |
40,42 |
16,27 |
0,263 |
42,7 |
0,004 |
99,65 |
0,18 |
10 |
H1721/2 |
39,63 |
16,14 |
0,26 |
43,18 |
0,002 |
99,21 |
0,18 |
Note: H1715 - coarse-grained lherzolite with
orthopyroxene poikilitic texture; H1718 - biotite-bearing lherzolite; H1720/1,
H1721/2 - lherzolite. Analysis was made on "Camebaxmicro" in
Analitical Center UIGGM SB RAS, Nobosibirsk by E. Nigmatylina.
The second
cross-section of the RRSZ extends from the town of Mậu A northward (Fig. 1). At
this cross-section small boudins and separate large bodies (up to 100 m) of
amphibole gabbros, garnet-bearing amphibole gabbros, amphibole websterites,
lherzolites, and schriesheimites are observed within gneisses. In the southern
part of this cross-section in the RRSZ, gneisses host a large body made up from
amphibole gabbros and websterites. Contacts of gabbroids with gneisses and
blastomylonites are distinct, but cooling zones are absent (Fig. 3). The
central part of the body is made up from websterites grading upward into
gabbroids (Fig. 4). Some outcrops of large-grained lherzolites with megacrysts
of orthopyroxene (H1715) also occur there. Bodies of lherzolites, schriesheimites,
and websterites are mapped in the central part of the shear zone. Garnet
amphibole gabbros and diorites are also widespread there. Some bodies are
differentiated from lherzolites to olivine websterites, and others, from
olivine websterites to websterites and amphibole melanogabbros. In the same
cross-section, a dike of small-grained amphibole gabbro-dolerite (H1712) is
found within gneisses. The dike is 3-4 m thick. Unlike the earlier described
bodies, no lensing occurs there. These observations imply that picrobasalt
magmas were intruded many times and this process continued even after the main
shear movements had been completed.
Table
2. Orthopyroxene composition of amphibole gabbro, pyroxenite and peridotite
from the Red River shear zone
|
Sample |
SiO2 |
TiO2 |
Al2O3 |
FeO |
MnO |
MgO |
CaO |
Cr2O3 |
Total |
f |
1 |
H1721/2 |
55,36 |
0,01 |
1,63 |
8,78 |
0,27 |
31,69 |
0,35 |
0,35 |
98,45 |
0,13 |
2 |
H1720/1 |
54,37 |
0,05 |
2,91 |
13,81 |
0,32 |
27,56 |
0,46 |
0,03 |
96,07 |
0,22 |
3 |
H1718 |
56,15 |
0,07 |
2,38 |
10 |
0,23 |
31,41 |
0,29 |
0,13 |
100,67 |
0,15 |
4 |
H1718 |
54,46 |
0,1 |
3,13 |
13,79 |
0,27 |
27,62 |
0,37 |
0,02 |
97,35 |
0,22 |
5 |
H1722/1 |
57,13 |
0,02 |
1,57 |
9,03 |
0,19 |
31,35 |
0,34 |
0,14 |
97,49 |
0,14 |
6 |
H1722/1 |
56,33 |
0,06 |
2,07 |
9,97 |
0,25 |
30,8 |
0,27 |
0,04 |
97,32 |
0,15 |
7 |
H1722/1 |
54,52 |
0,02 |
1,48 |
14,64 |
0,30 |
27,75 |
0,30 |
0,04 |
97,16 |
0,23 |
8 |
H1713 |
54,71 |
0,07 |
3,06 |
13,72 |
0,30 |
27,56 |
0,44 |
0,03 |
98,01 |
0,22 |
9 |
H1738 |
53,35 |
0,02 |
2,39 |
17,77 |
0,34 |
26,42 |
0,15 |
0,02 |
100,49 |
0,27 |
10 |
H1738 |
53,37 |
0 |
2,64 |
17,71 |
0,35 |
25,95 |
0,22 |
0,04 |
100,29 |
0,28 |
11 |
H1738 |
53,25 |
0,02 |
2,69 |
17,91 |
0,28 |
26,07 |
0,22 |
0,08 |
100,54 |
0,28 |
12 |
H1737 |
54,86 |
0,01 |
2,45 |
14,87 |
0,23 |
28,19 |
0,22 |
0,08 |
100,93 |
0,23 |
Note: H1718 - biotite-bearing lherzolite; H1721/2,
H1720/1, - lherzolite, H1713, H1738 - websterite; H1737 - amphibole gabbro.
Table
3. Clinopyroxene composition from amphibole gabbro, pyroxenite and
peridotite from the Red River shear zone
|
Sample |
SiO2 |
TiO2 |
Al2O3 |
FeO |
MnO |
MgO |
CaO |
Na2O |
K2O |
Cr2O3 |
Total |
f |
1 |
H1718 |
52,00 |
0,73 |
7,26 |
3,98 |
0,08 |
19,77 |
12,40 |
0,26 |
0,10 |
0,31 |
98,44 |
10,08 |
2 |
H1718 |
51,69 |
0,80 |
7,61 |
3,94 |
0,08 |
19,53 |
12,42 |
0,30 |
0,12 |
0,30 |
99,50 |
10,10 |
3 |
H1718 |
52,85 |
0,77 |
7,10 |
4,01 |
0,04 |
19,65 |
12,40 |
0,16 |
0,09 |
0,35 |
97,41 |
10,21 |
4 |
H1718 |
52,72 |
0,76 |
7,52 |
4,28 |
0,06 |
19,72 |
12,18 |
0,25 |
0,08 |
0,38 |
97,95 |
10,78 |
5 |
H1718 |
52,89 |
0,58 |
6,95 |
4,29 |
0,04 |
19,86 |
12,18 |
0,22 |
0,07 |
0,36 |
97,43 |
10,74 |
6 |
H1719/1 |
52,96 |
0,63 |
7,08 |
4,16 |
0,09 |
19,54 |
12,40 |
0,25 |
0,10 |
0,25 |
96,64 |
10,60 |
7 |
H1719/1 |
52,61 |
0,64 |
7,30 |
4,53 |
0,07 |
20,09 |
12,36 |
0,25 |
0,04 |
0,24 |
98,12 |
11,16 |
8 |
H1719/2 |
53,23 |
0,69 |
7,08 |
4,13 |
0,07 |
19,56 |
12,28 |
0,22 |
0,10 |
0,29 |
96,84 |
10,52 |
9 |
H1719/2 |
53,23 |
0,64 |
7,07 |
4,32 |
0,11 |
19,48 |
12,55 |
0,23 |
0,06 |
0,33 |
99,80 |
10,99 |
10 |
H1726 |
52,14 |
0,31 |
3,07 |
14,17 |
0,25 |
14,79 |
12,20 |
0,42 |
0,17 |
0,01 |
97,51 |
34,79 |
11 |
H1701/1 |
51,11 |
0,33 |
2,64 |
9,12 |
0,21 |
12,64 |
22,56 |
0,50 |
0,00 |
0,05 |
99,17 |
28,66 |
12 |
H1701/1 |
51,70 |
0,23 |
2,42 |
9,14 |
0,28 |
12,84 |
22,23 |
0,52 |
0,00 |
0,04 |
99,40 |
28,39 |
Note: H1718 - biotite-bearing lherzolite; H1719/1 -
lherzolite,
H1719/2 - garnet-bearing diorite;
H1726, H1701/1 - amphibole gabbro.
In the Việt
Trì area, amphibolites that underwent metamorphic differentiation are exposed
in a marl quarry. Between them, massive outcrops of amphibole gabbros,
hornblendites, as well as amphibole and olivine websterites occur, whose
composition is similar to the composition of rocks of the previous
cross-sections (Table 5).
Table
4. Amphibole composition of amphibole gabbro, pyroxenite and peridotite from
the Red River shear zone
N |
Sample |
SiO2 |
TiO2 |
Al2O3 |
Cr2O3 |
FeO |
MnO |
MgO |
CaO |
Na2O |
K2O |
Total |
1 |
H1591 |
47,8 |
0,77 |
10,9 |
0,23 |
6,93 |
0,13 |
16,8 |
11,9 |
1,5 |
0,23 |
97,13 |
2 |
H1704 |
45,3 |
1,27 |
10,8 |
0,07 |
15,1 |
0,27 |
11,6 |
11,5 |
1,26 |
0,46 |
97,75 |
3 |
H1706 |
45,1 |
1,75 |
10,8 |
0,09 |
14,2 |
0,33 |
11,6 |
11,4 |
1,39 |
0,88 |
97,56 |
4 |
H1712 |
42,9 |
2,09 |
14,5 |
0,3 |
7,99 |
0,05 |
14,4 |
11,7 |
2,46 |
0,99 |
97,31 |
5 |
H1713 |
46,8 |
1,44 |
10,5 |
0,23 |
10,8 |
0,15 |
14,7 |
10,9 |
1,86 |
0,29 |
97,60 |
6 |
H1714 |
50,9 |
0,76 |
7,55 |
0,05 |
12,1 |
0,28 |
14,5 |
11,4 |
0,42 |
0,4 |
98,37 |
7 |
H1715 |
46 |
1,62 |
10,9 |
0,24 |
10,9 |
0,15 |
14,5 |
10,7 |
1,99 |
0,29 |
97,18 |
8 |
H1715 |
46,8 |
0,48 |
11,6 |
0,88 |
4,17 |
0,09 |
17,8 |
12,4 |
1,71 |
0,86 |
96,84 |
9 |
H1716 |
46,8 |
0,93 |
8,76 |
0,07 |
13,8 |
0,22 |
13,2 |
11,4 |
0,68 |
0,63 |
96,53 |
10 |
H1717 |
48,7 |
0,52 |
9,2 |
0,1 |
11,2 |
0,14 |
15,2 |
11,6 |
1 |
0,66 |
98,27 |
11 |
H1722 |
49,4 |
0,65 |
9,5 |
0,67 |
4,59 |
0,09 |
18,5 |
12,1 |
1,06 |
0,41 |
96,97 |
12 |
H1726 |
45,8 |
1,02 |
9,63 |
0,01 |
14,6 |
0,26 |
12,3 |
11,4 |
1,03 |
0,81 |
96,86 |
13 |
H1729 |
45,9 |
1,48 |
9,8 |
0,18 |
13,4 |
0,13 |
13,5 |
11,3 |
1,11 |
0,52 |
97,34 |
14 |
H1734 |
45,5 |
1,16 |
11,2 |
0,13 |
13,5 |
0,17 |
12,6 |
11,8 |
1,26 |
1,04 |
98,30 |
15 |
H1735 |
43 |
2,07 |
12,2 |
0,05 |
17,4 |
0,27 |
9,12 |
11,4 |
1,32 |
1,23 |
98,13 |
16 |
H1736 |
43,4 |
0,8 |
14 |
0,16 |
9,58 |
0,07 |
15,3 |
11,4 |
2,1 |
0,38 |
97,16 |
17 |
H1737 |
45,2 |
0,67 |
12,3 |
0,65 |
8,07 |
0,09 |
16,6 |
11,5 |
1,72 |
0,28 |
97,06 |
18 |
H1738 |
44,9 |
0,73 |
12,7 |
0,21 |
10,4 |
0,11 |
15,4 |
11,1 |
1,76 |
0,2 |
97,47 |
19 |
H1701/1 |
43,6 |
2,35 |
12 |
0,07 |
14,2 |
0,16 |
11,3 |
11,8 |
1,83 |
1,07 |
98,27 |
20 |
H1711/1 |
46,6 |
0,84 |
9,69 |
0,05 |
12,8 |
0,27 |
13,4 |
11,3 |
1,06 |
0,58 |
96,56 |
21 |
H1720/1 |
43,1 |
1,94 |
14,8 |
0,31 |
7,73 |
0,11 |
14,2 |
11,8 |
2,71 |
1,16 |
97,80 |
22 |
H1721/2 |
43,3 |
1,98 |
14,6 |
0,23 |
8,21 |
0,09 |
14,1 |
11,7 |
2,68 |
1,03 |
98,00 |
23 |
H1721/2 |
46 |
0,69 |
13 |
0,25 |
7,52 |
0,15 |
15,8 |
11,5 |
1,79 |
0,54 |
97,34 |
24 |
H1721/2 |
45,5 |
0,69 |
13,4 |
0,26 |
7,64 |
0,11 |
15,8 |
11,5 |
1,87 |
0,6 |
97,32 |
25 |
H1721/2 |
46,3 |
1,5 |
10,9 |
0,19 |
11 |
0,16 |
14,7 |
10,9 |
1,91 |
0,27 |
97,78 |
26 |
H1722/1 |
45,7 |
0,7 |
13,4 |
0,26 |
7,63 |
0,13 |
15,2 |
11,4 |
1,65 |
0,52 |
96,57 |
Note: H1591- amphibolite (metamonzogabbro); H1701/1;
H1704, H1706, H1711/1, H1713, H1716, H1717, H1726, H1737 ? amphibole gabbro;
H1712 ? amphibole gabbrodolerite; H1713, H1736, H1738 ? websterite; H1715 -
coarse-grained lherzolite with orthopyroxene poikilitic texture; H1722 ? amphibole
peridotite; H1718 ? biotite-bearing lherzolite; H1719/1, H1720/1, H1721/2 -
lherzolite, H1719/2 ? garnet-bearing diorite; H1734, H1735 - amphibolite
MINERALOGY AND PETROGRAPHY OF THE
ROCKS
The
lherzolites and websterites from the Yên Bái area have been mineralogically and
petrographically characterized in earlier works [8]. The ultrabasic rocks at
the Mậu A cross-section are similar in petrography and petrochemistry.
Compositionally, olivine in the lherzolites corresponds to chrysolite (f =
17-27). Olivines have low content of CaO, which is typical for plutonic rocks
(Table 1). The Mậu A lherzolites and pyroxenites are characterized by high
content of alumina in clinopyroxenes (up to 7-8%) (Table 3), which indicates a
great depth of their generation unlike the Yên Bái peridotites. Clinopyroxenes
from the lherzolites of this region contain no more than 3% alumina [8].
High-Al clinopyroxenes are typical for garnet amphibole gabbros and diorites,
which are associated with lherzolites and websterites from the Mậu A area,
which is also indicative for higher pressure of their formation.
Primary-magmatic amphibole in peridotites and pyroxenites corresponds to
pale-coloured Mg-hornblende with high alumina of 8-11% (Table 4). For amphibole
from the lherzolites, the content of alumina and sodium shows a positive
correlation, which is not true for pyroxenites.
Fig.2. Synkinematic dykes of
amphibole gabbro and plagioclase-bearing hornblendite in gneisses and
blastomylonitesy of the Red River shear zone (cross - section near Bảo Yên
(Fig.1).
Fig. 3. The contact between
amphibole gabbro (H 1716), garnet- sillimanite biotite gneisses (H 1716/1) and
blastomylonites in the cross - section near Mậu A (Fig.2)
The
amphibole gabbros have the following petrographic composition: basic plagioclase,
clinopyroxene - magnesian augite-augite (f =10-35) and brown amphibole.
Orthopyroxene (bronzite) is not ubiquitous. Compositionally, amphibole
corresponds to Mg-hornblende and, less frequently, to pargasite. Edenite was
found only in the dikes of amphibole gabbrodolerite (Table 4). Ore minerals are
represented by Ti-magnetite and ilmenite. Impregnation of pyrrhotite and
chalcopyrite is rather widespread. No olivine is found in gabbroids. The rocks
have a gabbro texture and a massive structure with rare by oriented arrangement
of amphiboles. Thin sections show no signs of plastic deformations which are
typical for the host gneisses. In gabbroids, amphibole often displays a higher
degree of idiomorphism than plagioclase, which implies a higher content of
water in the melt. No cocrystallization of olivine with plagioclase, early
crystallization of orthopyroxene relative to clinopyroxene in websterites, and
the presence of garnet in some amphibole gabbros are indicative for deep-seated
crystallization (more than 6 kbar).
According to
alumina content in clinopyroxene, the amphibole gabbros are subdivided into two
groups (Table 3). The first cross-section, the Bảo Yên area, is characterized
only by amphibole gabbros with low content of alumina in pyroxene (2.5-3%), and
the second, Mậu A cross-section, by amphibole gabbros and garnet amphibole
gabbros with high content of alumina in clinopyroxene (up to 8%). This suggests
different facies of depth involved in the generation of these rocks. It is
possibly connected with different stages of their formation. Gabbroids,
pyroxenites, and peridotites with Al-rich pyroxenes were formed at great depth
under 6-8 kbar, as inferred from the host gneisses and garnet amphibolites [5].
The latter correspond to the garnet amphibole gabbros we have studied. Their
emplacement occurred before gneiss exhumation. Unlike them, the gabbroids with
low-Al pyroxenes were formed after exhumation at a shallower depth. As will be
shown below, these stages of evolution conform with the Ar-Ar ages.
PETROCHEMISTRY
AND GEOCHEMISTRY OF ROCKS
Petrochemical
composition of the RRSZ ultrabasic-basic association is given in Table 5. On
the variation diagrams MgO-Al2O3 and MgO-CaO,
lherzolites, pyroxenites, and amphibole gabbros form a single trend, which
permits us to refer them to a single differentiated association. This conforms
with geological observations of some bodies with magmatic differentiation. The
lherzolites from the Mậu A cross-section differ a little from the Yên Bái
lherzolites [8]. MgO content varies from 35 to 25% (Fig. 5). A significant
negative correlation of Mg with Al and Ca is observed in lherzolites, that
coincides with the general trend of differentiation in this association. No
correlation between Si and Mg suggests that the differentiation is due to
olivine fractionation. Websterites and olivine pyroxenites form a discrete
group, whose position on variation diagrams matches olivine fractionation (Fig.
5). They have higher content of Al2O3, CaO, and higher
Fe/(Fe+Mg). The amphibole gabbros form a compact group, which also follows the
general trend of fractionation. Garnet-bearing and garnet-free gabbroids do not
differ in chemical composition. They are moderately enriched in Al2O3
(up to 17%) and Ti (up to 1.3%) and are depleted in phosphorus. In content of
alkali they correspond to basalts of normal series (Table 5). In this aspect
they drastically differ from metamorphosed monzogabbronorite, which is
characterized by high concentration of potassium (up to 2%). High content of Ti
and P and REE pattern (Fig. 6) in this rock allows them to be classified as
gabbroids of subalkalic series. These observations raise the question of the
presence of subalkalic synmetamorphic magmatism in the RRSZ.
Table
5. Whole rock composition (in mass %) of lherzolite-websterite-gabbro
association from Red River shear zone
Sample |
SiO2 |
TiO2 |
Al2O3 |
Fe2O3 |
MnO |
MgO |
CaO |
Na2O |
K2O |
P2O5 |
LiO |
Total |
Cross - section near Bảo Yên Townlet |
||||||||||||
Amphibolite (metamonzogabbro) |
||||||||||||
H1591 |
44,88 |
3,85 |
12,81 |
16,99 |
0,25 |
6,25 |
8,96 |
2,16 |
1,99 |
0,65 |
0,52 |
99,31 |
Amphibole gabbro |
||||||||||||
H1599 |
47,81 |
1,09 |
14,98 |
11,5 |
0,18 |
8,31 |
12,65 |
2,06 |
0,42 |
0,08 |
1,06 |
100,14 |
H1701/1 |
48,35 |
1,42 |
11,89 |
11,18 |
0,18 |
9,34 |
14,45 |
1,59 |
0,66 |
0,13 |
0,76 |
99,95 |
Hornblendite |
||||||||||||
H1701/2 |
47,11 |
1,49 |
10,58 |
13,43 |
0,21 |
13,34 |
11,1 |
1,27 |
0,35 |
0,11 |
0,79 |
99,78 |
Cross - section near Mậu A Townlet |
||||||||||||
Amphibole gabbro (asterisk ? with garnet) |
||||||||||||
H1704* |
49,64 |
1,33 |
16,28 |
10,86 |
0,16 |
7,68 |
12,7 |
0,49 |
0,42 |
0,15 |
0,04 |
99,75 |
H1706 |
48,84 |
0,99 |
14,2 |
11,38 |
0,19 |
8,45 |
13,21 |
1,28 |
0,42 |
0,09 |
0,71 |
99,76 |
H1711* |
50,49 |
1,01 |
14,49 |
11,31 |
0,21 |
8,11 |
12,56 |
0,3 |
0,71 |
0,09 |
0,91 |
100,19 |
H1711/1* |
49,57 |
0,99 |
14,46 |
11,33 |
0,25 |
8,24 |
12,35 |
0,41 |
0,55 |
0,08 |
1,38 |
99,61 |
H1714 |
52,99 |
0,54 |
16,34 |
7,7 |
0,17 |
8,05 |
12,36 |
0,4 |
0,44 |
0,05 |
0,83 |
99,87 |
H1716 |
52,09 |
0,63 |
16,04 |
9,66 |
0,19 |
7,81 |
12,02 |
0,3 |
0,64 |
0,06 |
1,2 |
100,64 |
H1717 |
50,87 |
0,38 |
14,92 |
8,6 |
0,13 |
9,36 |
12,22 |
1,04 |
0,89 |
0,04 |
1,52 |
99,97 |
Websterite and olivine websterite |
||||||||||||
H1708 |
46,06 |
0,8 |
8,17 |
14,1 |
0,2 |
21,34 |
8,26 |
0,3 |
0,19 |
0,09 |
0,99 |
100,5 |
H1713 |
50,02 |
0,49 |
9,82 |
11,55 |
0,19 |
16,35 |
7,63 |
0,4 |
0,4 |
0,04 |
1,96 |
98,85 |
H1722 |
45,5 |
0,88 |
9,55 |
10,96 |
0,19 |
20,79 |
9,8 |
1,61 |
0,25 |
0,06 |
0,52 |
100,11 |
H1722/1 |
46,59 |
0,78 |
12,53 |
10,29 |
0,2 |
20,19 |
6,66 |
1,04 |
0,19 |
0,07 |
1,09 |
99,63 |
Lherzolite and amphibole peridotite |
||||||||||||
H1720 |
51,04 |
0,18 |
5,99 |
9,73 |
0,18 |
25,03 |
4,78 |
1,47 |
0,33 |
0,03 |
1,04 |
99,8 |
H1720/1 |
50,4 |
0,17 |
5,54 |
10,11 |
0,19 |
27,16 |
3,75 |
1,24 |
0,29 |
0,03 |
0,52 |
99,4 |
H1720/2 |
49,42 |
0,14 |
4,62 |
9,64 |
0,19 |
28,71 |
3,64 |
1,24 |
0,27 |
0,03 |
0,98 |
98,88 |
H1719/1 |
46,33 |
0,25 |
5,94 |
11,38 |
0,21 |
30,14 |
2,55 |
0,9 |
0,12 |
0,03 |
1 |
98,85 |
H1718 |
46,25 |
0,23 |
4,88 |
13,21 |
0,21 |
30,81 |
2,55 |
0,67 |
0,13 |
0,03 |
0,16 |
99,13 |
H1721/2 |
45,11 |
0,18 |
4,13 |
11,29 |
0,24 |
32,07 |
3,17 |
0,66 |
0,17 |
0,03 |
1,32 |
98,37 |
H1718/1 |
47,35 |
0,22 |
5,88 |
12,93 |
0,21 |
32,38 |
2 |
0,3 |
0,11 |
0,03 |
0,02 |
101,43 |
Coarse-grained lherzolite with orthopyroxene poikilitic texture |
||||||||||||
H1715 |
47,51 |
0,42 |
7,4 |
13,2 |
0,19 |
25,56 |
3,54 |
0,68 |
0,18 |
0,03 |
1,39 |
100,1 |
Garnet-bearing diorite |
||||||||||||
H1719 |
55,13 |
0,72 |
26,22 |
5,44 |
0,06 |
5,94 |
0,03 |
3,57 |
0,92 |
0,03 |
1,11 |
99,17 |
Dyke of the amphibole gabbrodolerite |
||||||||||||
H1712 |
49,6 |
0,71 |
12 |
11,34 |
0,19 |
14,4 |
9,31 |
0,79 |
0,48 |
0,06 |
0,5 |
99,38 |
Cross - section near Việt Trì Town (open-cast mine ) |
||||||||||||
Amphibolite (metagabbro) |
||||||||||||
H1734 |
49,18 |
0,89 |
14,8 |
10,64 |
0,18 |
8,5 |
12,72 |
1,76 |
0,59 |
0,07 |
0,89 |
100,22 |
H1735 |
49,6 |
1,14 |
14,71 |
13,06 |
0,2 |
6,6 |
11,7 |
1,69 |
0,69 |
0,11 |
0,88 |
100,38 |
Olivine websterite |
||||||||||||
H1736 |
45,72 |
1,16 |
11,05 |
14,71 |
0,19 |
13,5 |
9,13 |
2,19 |
0,36 |
0,18 |
1,23 |
99,42 |
H1737 |
50,34 |
0,44 |
9,91 |
11,86 |
0,19 |
16,1 |
7,86 |
1,33 |
0,26 |
0,03 |
0,66 |
98,98 |
H1738 |
46,52 |
0,95 |
12,31 |
13,02 |
0,19 |
12,6 |
10,62 |
1,98 |
0,28 |
0,08 |
0,94 |
99,49 |
Note: analysis was made by RFA method in
Analytical Center UIGGM SB RAS, Nobosibirsk, by A.D. Kireev. Iron ? in ferrous
oxide
Table
6. Content of trace elements in rocks (%) of lherzolite-websterite-gabbro
association from the Red River shear zone
Sample |
H 1591 |
H 1599 |
H 1701/2 |
H 1704 |
H 1716 |
H 1714 |
H 1711 |
H 1713 |
H 1708 |
H 1715 |
H 1720/1 |
H 1718 |
H 1722 |
H 1712 |
Sc |
32.19 |
36.99 |
33.39 |
41.12 |
36.79 |
36.09 |
38.57 |
20.20 |
17.99 |
16.44 |
17.39 |
11.74 |
25.40 |
27.90 |
Rb |
91.14 |
11.73 |
3.40 |
5.34 |
18.98 |
8.15 |
11.57 |
5.69 |
0.77 |
0.55 |
4.65 |
0.01 |
1.67 |
14.15 |
Sr |
380.03 |
201.77 |
165.98 |
265.95 |
100.26 |
126.30 |
106.32 |
6.16 |
47.21 |
31.67 |
57.55 |
34.16 |
56.60 |
99.00 |
Y |
44.53 |
17.06 |
18.04 |
28.55 |
14.65 |
12.63 |
22.10 |
11.02 |
16.40 |
8.38 |
4.33 |
4.74 |
10.62 |
14.35 |
Zr |
34.08 |
25.53 |
36.90 |
15.13 |
14.58 |
15.39 |
18.83 |
34.79 |
22.90 |
13.53 |
13.35 |
11.76 |
29.29 |
23.32 |
Nb |
46.49 |
2.94 |
4.85 |
5.48 |
3.84 |
4.11 |
6.28 |
2.64 |
4.66 |
1.69 |
1.08 |
1.23 |
0.90 |
1.38 |
Cs |
1.22 |
0.37 |
0.19 |
0.17 |
0.90 |
0.35 |
0.63 |
1.38 |
0.08 |
0.26 |
0.07 |
0.04 |
0.24 |
0.85 |
Ba |
619.33 |
51.61 |
8.22 |
8.33 |
49.62 |
27.85 |
152.09 |
4.43 |
21.98 |
18.00 |
48.50 |
20.04 |
30.85 |
65.74 |
La |
51.62 |
3.19 |
6.32 |
14.08 |
9.08 |
7.90 |
8.82 |
5.46 |
13.10 |
4.18 |
2.95 |
2.92 |
4.43 |
5.75 |
Ce |
100.00 |
7.82 |
13.93 |
27.29 |
17.02 |
13.77 |
16.29 |
10.40 |
22.54 |
7.40 |
5.19 |
5.88 |
9.20 |
11.32 |
Pr |
13.65 |
1.08 |
1.87 |
3.17 |
1.99 |
1.81 |
2.04 |
1.37 |
2.66 |
1.02 |
0.59 |
0.71 |
1.33 |
1.42 |
Nd |
53.82 |
5.15 |
8.13 |
12.59 |
7.51 |
6.58 |
7.87 |
5.28 |
10.36 |
3.91 |
2.28 |
2.52 |
5.92 |
5.47 |
Sm |
12.42 |
2.11 |
2.89 |
3.96 |
2.26 |
1.62 |
2.50 |
1.59 |
2.63 |
1.06 |
0.60 |
0.76 |
1.90 |
1.71 |
Eu |
3.38 |
0.76 |
1.07 |
1.10 |
0.61 |
0.54 |
0.75 |
0.33 |
0.44 |
0.05 |
0.12 |
0.13 |
0.66 |
0.53 |
Gd |
9.22 |
2.10 |
2.53 |
3.81 |
2.01 |
1.79 |
2.70 |
1.42 |
2.07 |
1.03 |
0.50 |
0.56 |
1.72 |
1.76 |
Tb |
1.60 |
0.44 |
0.51 |
0.75 |
0.40 |
0.35 |
0.57 |
0.28 |
0.40 |
0.24 |
0.10 |
0.12 |
0.32 |
0.38 |
Dy |
8.61 |
2.83 |
3.10 |
4.79 |
2.58 |
2.25 |
3.66 |
1.84 |
2.35 |
1.42 |
0.69 |
0.77 |
1.95 |
2.38 |
Ho |
1.74 |
0.67 |
0.65 |
1.08 |
0.57 |
0.49 |
0.87 |
0.41 |
0.50 |
0.34 |
0.15 |
0.18 |
0.44 |
0.54 |
Er |
4.26 |
1.68 |
1.60 |
2.94 |
1.60 |
1.32 |
2.24 |
1.13 |
1.32 |
0.93 |
0.45 |
0.45 |
1.13 |
1.39 |
Tm |
0.54 |
0.24 |
0.21 |
0.41 |
0.22 |
0.19 |
0.36 |
0.14 |
0.17 |
0.12 |
0.07 |
0.06 |
0.16 |
0.20 |
Yb |
3.84 |
1.76 |
1.38 |
2.99 |
1.49 |
1.39 |
2.30 |
1.07 |
1.19 |
0.90 |
0.47 |
0.49 |
1.05 |
1.39 |
Lu |
0.54 |
0.25 |
0.21 |
0.46 |
0.23 |
0.19 |
0.36 |
0.18 |
0.17 |
0.14 |
0.08 |
0.08 |
0.16 |
0.21 |
Hf |
1.41 |
0.80 |
1.05 |
0.77 |
0.60 |
0.61 |
0.85 |
0.95 |
0.91 |
0.38 |
0.28 |
0.26 |
0.86 |
0.74 |
Ta |
3.16 |
0.19 |
0.11 |
0.44 |
0.22 |
0.29 |
0.38 |
0.19 |
0.14 |
0.05 |
0.07 |
0.05 |
0.01 |
0.01 |
Pb |
5.36 |
1.10 |
1.56 |
14.62 |
5.12 |
3.13 |
2.86 |
1.19 |
0.94 |
3.82 |
2.23 |
0.33 |
0.47 |
1.43 |
Th |
2.00 |
0.33 |
0.67 |
3.64 |
1.95 |
2.12 |
2.34 |
1.49 |
3.18 |
1.24 |
0.83 |
0.74 |
0.41 |
1.45 |
U |
0.47 |
0.08 |
0.22 |
0.72 |
0.37 |
0.35 |
0.48 |
0.29 |
0.53 |
0.22 |
0.20 |
0.16 |
0.06 |
0.32 |
(La/Sm) |
2.6 |
0.9 |
1.4 |
2.2 |
2.5 |
3.1 |
2.2 |
2.2 |
3.1 |
2.5 |
3.1 |
2.4 |
1.5 |
2.1 |
(Ce/Yb) |
6.6 |
1.1 |
2.5 |
2.3 |
2.9 |
2.5 |
1.8 |
2.4 |
4.8 |
2.1 |
2.8 |
3.0 |
2.2 |
2.0 |
Note: analysis was made by ICP-MS method in
Irkutsk, using the following standards: IP-1, BHVO-1, W-2, JB-2, RGM-1.
Figure 4. The large intrusive
body with differentiation from websterite (H1713) to amphibole gabbro (H1714)
(H1713) in the cross - section near Mậu A (Fig.2).
Interesting
data have been obtained by analyzing rare and rare-earth elements of
ultrabasic-basic association of the RRSZ (Table 6). Despite close chemical
composition of amphibole gabbros in different areas, they appeared to be of
same difference in distribution of REE (Fig. 6). The gabbroids from the Bảo Yên
area display a pattern of weakly fractionated REE distribution at the level of
10 chondrite units and a weak positive Eu anomaly. The ratios La/Sm and Ce/Yb
are close to unity (0.94-1.11 and 1.11-2.5, respectively). The primitive
mantle-normalized spidergram shows Zr and Hf minima and Rb, Th, U, and Sr
maxima. In geochemistry, metamorphosed monzogabbronorite differs drastically
from these gabbroids. It is characterized by higher contents of REE and their
strongly differentiated distribution (La/Sm = 2.6; Ce/Yb = 6.55). Eu anomaly is
absent. The spidergram displays minima for Zr, Hf, and Y, and maxima for Rb,
Nb, Ba, U, and Th.
Figure
5. Whole rock composition of the synkinematic lherzolite-websterite-gabbro
association from Red River shear zone on the MgO-Al2O3,
MgO- CaO diagrams.
1 ? amphibolite; 2 ? amphibolitic gabbro; 3 ? websterite; 4 ? lherzolite; 5
lherzolite from Yên Bái area [7].
Figure
6. REE distribution patterns in the rock of the synkinematic lherzolite-
websterite-gabbro association Red River shear zone. Samples number see in plate
6. Trace elements are chondrite-normalized as recommended by Boyton (1984).
Amphibole
gabbroids, pyroxenites, and peridotites from the Mậu A area have similar REE
patterns at concentration levels of more than 10 units (Fig. 6). Differences in
levels of their concentration are in agreement with the model of fractionation
of a picrite or picrodolerite melt. The lowest concentrations are typical of
lherzolites and some olivine websterites. Nevertheless, REE concentrations in
lherzolites exceed the typical level of mantle peridotite. A weak Eu minimum is
observed in them. Monotypic REE spectra are established for amphibole
garnet-free and garnet-bearing gabbros, which indicate that they belong to the
same series. The presence or absence of garnet seems to be related to the
specific features of composition (Fe/(Fe+Mg)) or conditions of generation (high
pressure). In general, REE are more differentiated as compared with the first
area. The ratios La/Sm and Ce/Yb are close for peridotites (2.4 and 3.0),
pyroxenites (2.15 and 2.4), and gabbroids (2.2 and 2.3). As for the Bảo Yên
area, spidergrams of the Mậu A cross-section show Zr, Y, and Hf minima and,
generally, U, Th, Sr, Rb, and Ba maxima, though the behaviour of the latter
elements is not unambiguous, which probably is linked with metamorphism. In
geochemical signature, the dike of amphibole gabbro-dolerites is similar to the
differentiated series (Fig. 6). This suggests that the parent melt was composed
of them. The coarse-grained lherzolite (H1715) differs from the whole series of
rocks in a drastic Eu minimum, though in other elements it is close to other
lherzolites.
RESULT
OF Ar-Ar DATING OF AMPHIBOLE GABBRO
Earlier
attempts of Ar-Ar dating of lherzolites from the Yên Bái area were not
successful [8]. A possible reason is that these rocks are poor in potassium and
the excessive argon borrowed from the host rocks had an effect on their
isotopic composition. To carry out isotope analysis, we chose six specimens of
the freshest amphibole gabbros and schriesheimite from different areas.
Specimen H1701/2 is a plagioclase hornblendite from an isolated lens of the Bảo
Yên cross-section (Fig. 2). It is made up of brown Mg-hornblende with
subordinate plagioclase. Specimens H1706, H1711, H1716, H1722 were taken from
the Mậu A cross-section. Specimen H1706/1 is garnet-free amphibole gabbro from
a large boudin among gneisses; H1711 is garnet-bearing amphibole gabbro from an
outcrop of basement near a spring; H1716 is amphibole gabbro from the contact
with blastomylonites from a differentiated body; H1722 is fresh schriesheimite
among lherzolites, and H1736 is amphibole olivine websterite from a marl quarry
in the Việt Trì cross-section.
Results of
bulk analysis are shown in Fig. 7. The oldest ages are obtained from amphibole
garnet gabbro (H1711), amphibole gabbro (H1716), and schriesheimite (H1722)
from the Mậu A cross-section: 42 ± 2.4; 51
± 2; and 49
± 2.6 Ma, respectively. The amphibole gabbro from
the southern part of the Mậu A cross-section (H1706) is younger - 35.5 ± 1 Ma.
The olivine websterite from the quarry is of the same age - 35 ± 2.3
Ma. The youngest age is obtained from the Bảo Yên hornblendite - 25 ± 1.6
Ma. As inferred from the spectra (Fig. 7), the amphibole gabbros, crystallized
under low pressures, have no excessive argon, which suggests that they formed
synchronously with the displaced metamorphic formations of the RRSZ [5]. The
other specimens have an excess of argon, which naturally hampers the estimation
on the time of origin of the whole complex. Nevertheless, the obtained data
provide a lower time limit of formation of the considered intrusions, which
prevents them from to be referred to as fragments of the ancient layered
ultramafic-mafic massifs of the Cam An Complex or as fragments of an ophiolite
association.
DISCUSSION
Geological,
mineralo-petrographic, and petrochemical data show that lherzolites,
websterites, and amphibole gabbros form a single lherzolite-websterite-gabbro
differentiated association. These rocks form small dike-shaped bodies disturbed
by strike-slip faults and subjected to lensing. Intact dikes of amphibole
gabbro-dolerites are found in places. According to petrographic and
mineralogical signatures, two depth facies of generation of these rocks are
recognized. Garnet-bearing amphibole gabbroids as well as websterites and
lherzolites with high content of alumina in pyroxenes were crystallized at a
pressure of no less than 6 kbar. However, the amphibole gabbros from the Bảo
Yên and Yên Bái cross-sections are characterized by a shallower depth of their
generation. Geological data, fine-grained fabric, and dolerite texture suggest
that the dike of amphibole dolerite was crystallized after the main stage of
exhumation. Having much in common, the parenty melts from different
cross-sections differ in geochemistry. Within some clusters, ultrabasic rocks
and gabbroids have complementary geochemical features, which suggests that they
were differentiated from the same magma.
Preliminary
isotope studies provided some tentative stages of formation of the
ultrabasic-basic association of the RRSZ. The early stage (49-42 Ma) gave rise
to the garnet-bearing amphibole gabbros and peridotites of the Mậu A
cross-section, which were intruded under depth condition before the exhumation
of the matter from the shear zone. Younger ages (35 Ma) have been obtained from
the amphibole gabbros in the marginal part of the shear zone of the Mậu A
cross-section and for the websterite from the Việt Trì cross-section, which
coincides with the time of formation of lamproites in the Phan Si Pan province
[9]. The youngest age (25 Ma) is obtained from amphibole gabbroids, which were
generated at lower depths, most likely, after exhumation. It is probable for
this reason that they virtually have no excessive argon. Of course, the isotope
age of the formation of this association require a more precise determination,
but the available geological and mineralo-petrographic data confirm that there
were several stages of intrusion of the single ultrabasic-basic association.
Thus, a
multistage synshear differentiated lherzolite-websterite-gabbro association is
to be distinguished as part of the RRSZ. The presence of high-temperature
mantle-derived melts, which intruded at different stages of formation of the
RRSZ, provides a new vision of its tectonic history. Moreover, the ore
potential of this structure needs revision in the new context.
This work is
supported by the Ministry for Science and Technology of Việt Nam in the
framework of the project "Intra-plate magmatism of North Việt Nam and its
metallogeny", and by grant 03-05-65088 from the Russian Foundation for
Basic Research and "Leading Scientific Schools" (grant
NSH-1573.2003.5).
REFERENCES
1. Tapponier P., Lacassin R., Leloup P.H.,
Scharer U., Zhong D., Wu H., Liu X., Ji S., Zhang L., and Zhong J., 1990.
The Ailao-Shan - Red River metamorphic belt: Tertiary left-lateral shear
between Sundaland and South China. Nature, 343: 431-437.
2.
Dovzhikov A.E., Bui Phu My, Vasilevskaya E.D., et al., 1965. Geology of North Việt Nam. Hà Nội, 667 p.
(in Russian).
3.
Harrison T.M., Wenji C., Leloup P.H., Ryerson F.J., and Tapponier P., 1992. An Early Miocene transition in deformation
regime within the Red River fault zone, Yunnan, and its significance for
Indo-Asian tectonics. J. Geophys. Res, 97: 7159-7182.
4. Leloup
P.H., Lacassin R., Tapponnier P., Scharer U., Zhong D., Liu X., Zhang L.,
Shaocheng, J., and Phan T.T., 1995.
The Ailao Shan - RRSZ (Yunnan, China), Tertiary transform boundary of
Indochina. Tectonophysics, 251: 3-84.
5. Trần
Ngọc Nam, Toriumi M., Itaya T., 1998.
P-T-t paths and post-metamorphic exhumation of the Dãy Núi Con Voi shear zone
in Việt Nam. Tectonophysics, 290: 299-318.
6. Trần
Trọng Hoà, Phan Lưu Anh, Ngô Thị Phượng, Nguyễn Văn Thế, Trần Tất Thắng, 2000.
The Cenozoic granites in Red River zone. J. of Sci. of the Earth, 22/4:
306-318
7. Trần
Trọng Hoà, Ngô Thị Phượng, Nguyễn Văn Thế, 1999. Subdivision and correlation of
mafic-ultramafic intrusive formations in the Lục Yên Châu sheet series. Geol.
& Min. Res. of Việt Nam, III: Hà Nội (in Vietnamese).
8. Trần
Trọng Hoà, Trần Tuấn Anh, Ngô Thị Phượng, et al, 2000. Ultramafic formation in the Red River Zone. J.
Earth Sci., 22/3. Hà Nội (in Vietnamese).
9.
Polyakov G.V., Nguyen Trong Yem, Balykin P.A., et al, 1997. New data on cocite, ultrapotassic basic rock
in North Việt Nam. Geologia I Geofizika, 38/1: 154-167. Moskva (in Russian).